Quantum computing

Many modern electronic devices are designed using quantum mechanics. Examples include the laser, the transistor (and thus the microchip), the electron microscope, and magnetic resonance imaging (MRI). The study of semiconductors led to the invention of the diode and the transistor, which are indispensable parts of modern electronics systems, computerand telecommunication devices. Another application is for making laser diode and light emitting diode which are a high-efficiency source of light.

Best Essays

A working mechanism of a resonant tunneling diode device, based on the phenomenon of quantum tunneling through potential barriers. (Left: band diagram; Center: transmission coefficient; Right: current-voltage characteristics) As shown in the band diagram(left), although there are two barriers, electrons still tunnel through via the confined states between two barriers(center), conducting current.Many electronic devices operate under effect of quantum tunneling. It even exists in the simple light switch. The switch would not work if electrons could not quantum tunnel through the layer of oxidation on the metal contact surfaces. Flash memory chips found in USB drives use quantum tunneling to erase their memory cells. Some negative differential resistance devices also utilize quantum tunneling effect, such as resonant tunneling diode. Unlike classical diodes, its current is carried by resonant tunneling through two or more potential barriers (see right figure). Its negative resistance behavior can only be understood with quantum mechanics: As the confined state moves close to Fermi level, tunnel current increases. As it moves away, current decreases. Quantum mechanics is necessary to understanding and designing such electronic devices.CryptographResearchers are currently seeking robust methods of directly manipulating quantum states. Efforts are being made to more fully develop quantum cryptography, which will theoretically allow guaranteed secure transmission of information.An inherent advantage yielded by quantum cryptography when compared to classical cryptography is the detection of passive eavesdropping. This is a natural result of the behavior of quantum bits; due to the observer effect, if a bit in a superposition state were to be observed, the superposition state would collapse into an eigenstate. Because the intended recipient was expecting to receive the bit in a superposition state, the intended recipient would know there was an attack, because the bit’s state would no longer be in a superposition.[Quantum computingAnother goal is the development of quantum computers, which are expected to perform certain computational tasks exponentially faster than classical computers. Instead of using classical bits, quantum computers use qubits, which can be in superpositions of states. Quantum programmers are able to manipulate the superposition of qubits in order to solve problems that classical computing cannot do effectively, such as searching unsorted databases or integer factorizationIBM claims that the advent of quantum computing may progress the fields of medicine, logistics, financial services, artificial intelligence and cloud security.[nother active research topic is quantum teleportation, which deals with techniques to transmit quantum information over arbitrary distances.Macroscale quantum effectsWhile quantum mechanics primarily applies to the smaller atomic regimes of matter and energy, some systems exhibit quantum mechanical effects on a large scale. Superfluidity, the frictionless flow of a liquid at temperatures near absolute zero, is one well-known example. So is the closely related phenomenon of superconductivity, the frictionless flow of an electron gas in a conducting material (an electric current) at sufficiently low temperatures. The fractional quantum Hall effect is a topological ordered state which corresponds to patterns of long-range quantum entanglement.[ States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.Quantum theoryQuantum theory also provides accurate descriptions for many previously unexplained phenomena, such as black-body radiation and the stability of the orbitals of electrons in atoms. It has also given insight into the workings of many different biological systems, including smell receptors and protein structures Recent work on photosynthesis has provided evidence that quantum correlations play an essential role in this fundamental process of plants and many other organisms.[ Even so, classical physics can often provide good approximations to results otherwise obtained by quantum physics, typically in circumstances with large numbers of particles or large quantum numbers. Since classical formulas are much simpler and easier to compute than quantum formulas, classical approximations are used and preferred when the system is large enough to render the effects of quantum mechanics insignificant.Free particleFor example, consider a free particle. In quantum mechanics, a free matter is described by a wave function. The particle properties of the matter become apparent when we measure its position and velocity. The wave properties of the matter become apparent when we measure its wave properties like interference. The wave–particle duality feature is incorporated in the relations of coordinates and operators in the formulation of quantum mechanics. Since the matter is free (not subject to any interactions), its quantum state can be represented as a wave of arbitrary shape and extending over space as a wave function. The position and momentum of the particle are observables. The Uncertainty Principle states that both the position and the momentum cannot simultaneously be measured with complete precision. However, one can measure the position (alone) of a moving free particle, creating an eigenstate of position with a wave function that is very large (a Dirac delta) at a particular position x, and zero everywhere else. If one performs a position measurement on such a wave function, the resultant x will be obtained with 100% probability (i.e., with full certainty, or complete precision). This is called an eigenstate of position – or, stated in mathematical terms, a generalized position eigenstate (eigendistribution). If the particle is in an eigenstate of position, then its momentum is completely unknown. On the other hand, if the particle is in an eigenstate of momentum, then its position is completely unknown.[90] In an eigenstate of momentum having a plane wave form, it can be shown that the wavelength is equal to h/p, where h is Planck’s constant and p is the momentum of the eigenstate.

Get Quality Essay Help

WE WRITE ESSAYS FOR STUDENTS

Tell us about your assignment and we will find the best writer for your paper

Write My Essay For Me

We provide academic help with writing in all the basic subjects, which are included in high school, college, and university curriculum. We write papers of all academic levels.

The assistance of our writers is prompt. They carefully stick to the assignment instructions, conduct full research, use secure sources of information, write from scratch, and check each paper for plagiarism.

All essays are plagiarism-free and pass Turnitin, SafeAssign, LopesWrite, etc. Hire Your Personal Essay Writer Today!

PLACE YOUR ORDER